کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1066189 948678 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Traffic flow evolution effects to nitrogen dioxides predictability in large metropolitan areas
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست علوم زیست محیطی (عمومی)
پیش نمایش صفحه اول مقاله
Traffic flow evolution effects to nitrogen dioxides predictability in large metropolitan areas
چکیده انگلیسی

A genetically-optimized modular neural network is used to predict the temporal of nitrogen dioxides in a highly congested urban freeway by integrating, in a single prediction shell, information on past values of nitrogen dioxide and ozone, as well as traffic volume, travel speed and occupancy. Results indicate that the approach is more accurate for one and multiple steps ahead predictions when compared to a simple static neural network. They also indicate that the integration of traffic information in the process of prediction improves to some extent the predictability of nitrogen dioxides evolution. It is also shown that the look-back time window for pollutants-related data increases with relation to the increase of the prediction horizon.

Research highlights
► Nitrogen dioxide (NO2) concentrations in a congested urban freeway are predicted using a genetically optimized modular neural network.
► Information on traffic and ozone hourly evolution is taken into consideration.
► The integration of traffic information in the process of prediction improves on the predictability of NO2.
► The pollutants’ look-back time window for prediction increases with relation to the increase of the prediction horizon.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Transportation Research Part D: Transport and Environment - Volume 16, Issue 4, June 2011, Pages 273–280
نویسندگان
, , ,