کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10677577 | 1012360 | 2016 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Hopf bifurcation and its stability for a vector-borne disease model with delay and reinfection
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مکانیک محاسباتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this study, we investigated a delayed vector-borne disease model with partial immunity to reinfection. The equilibria and the threshold of the model were determined according to the basic reproductive number R0. The analysis showed that a time delay destabilized the system. Using the delay as a bifurcation parameter, we established the conditions for the stability of the equilibria and the existence of a Hopf bifurcation. We determined the properties of the Hopf bifurcation by applying the normal form theory and center manifold argument, and for the first time, we considered the global continuation of the local Hopf bifurcation for a delayed vector-borne disease epidemic model. Furthermore, we performed some numerical simulations to illustrate our theoretical analysis. Sensitivity analysis showed that preventive control to minimize vector-human contacts and using insecticide to control the vector are effective measures for reducing infections.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematical Modelling - Volume 40, Issue 3, 1 February 2016, Pages 1685-1702
Journal: Applied Mathematical Modelling - Volume 40, Issue 3, 1 February 2016, Pages 1685-1702
نویسندگان
Jinhu Xu, Yicang Zhou,