کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1702696 1519399 2016 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stability and Hopf-bifurcation in a general Gauss type two-prey and one-predator system
ترجمه فارسی عنوان
پایداری و هاف ـ انشعاب در یک سیستم گاوسی عمومی دو طعمه و یک شکارچی
کلمات کلیدی
ثبات؛ سیستم شکارچی ـ طعمه؛ هاف ـ انشعاب ؛ چرخه محدود
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
چکیده انگلیسی


• Local and global stability behaviour of a Gauss type general two-prey and one-predator model.
• Stability and direction of Hopf-bifurcation is studied.
• The intra-specific interference coefficient of the predator plays an important role in governing the dynamics of the system.
• Numerical simulation experiments have been conducted to examine the behaviour of the system with different parameters.

A Gauss type general prey–predator mathematical model is proposed and analysed to study the effect of predation on two competing prey species. The growth rate and functional responses are taken to be general non-linear functions. By analysing the model, local stability of all possible equilibrium points is discussed. By choosing a suitable Lyapunov function the global stability of the system at positive equilibrium point is also found. For the purpose of numerical simulation, growth rates of both prey species are taken to be logistic and the predator's functional response on the prey species are taken as Holling type-II. Taking death rate of the predator as a bifurcation parameter, we observe Hopf-bifurcation of the system. Then we have discussed the stability and direction of the Hopf-bifurcation. We also observed that intra-specific interference factor is an important parameter in governing the dynamics of the system.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematical Modelling - Volume 40, Issues 11–12, June 2016, Pages 5793–5818
نویسندگان
, , , ,