کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10701402 1021129 2013 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Numerical simulation of energetic electron microsignature drifts at Saturn: Methods and applications
ترجمه فارسی عنوان
شبیه سازی عددی رگرسیون های میکروسیمنی الکترون پر انرژی در زحل: روش ها و برنامه های کاربردی
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم فضا و نجوم
چکیده انگلیسی
Many recent studies show that energetic electron microsignatures are a powerful tool for characterizing key aspects of Saturn's magnetospheric configuration and dynamics. In all previous investigations, however, analysis of these features was performed through the use of a series of simplifying assumptions (e.g. dipole field model). Furthermore, typical observable parameters of microsignatures (e.g. energy dependent location) have only been discussed qualitatively and a clear understanding about how microsignatures evolve in the magnetosphere is currently lacking. In this study we present a numerical simulation that we developed in order to describe the apparent motion of microsignatures in Saturn's magnetosphere, under the influence of arbitrary magnetic and electric field models. Our simulations reproduce successfully some typical microsignature properties (energy-time dispersion, high/low lifetime at low/high electron energies). They also indicate how simplifying assumptions used in analytical methods introduce several systematic errors. We demonstrate that, depending on the application and under certain conditions these errors can be neglected, like for instance for small pitch angles and at regions that the dipole approximation is sufficient (inside the orbit of Dione) or for electron energies below few hundred keV. For higher electron energies, systematic errors amplify significantly and existing analytical methods cannot be used. Our model can reconstruct the energy dependent position of microsignatures observed by the MIMI/LEMMS detector with high accuracy, allowing the inference of non-corotational flows (or electric fields) that can be as low as few tens of m s−1. Since, however the calculation of such flows is indirect, the accuracy of such a determination can be reduced by more than an order of magnitude, if some of these free parameters involved in the simulation cannot be sufficiently constrained. One way to provide such constraints is through inputs (e.g. instantaneous plasma moments) from various Cassini instruments and updated magnetospheric field models. In that case, microsignature analysis may prove to be one of the best methods for attempting to measure or to at least constrain the magnitude of the very slow and global plasma outflow in Saturn's magnetosphere that is driven by mass loading at Enceladus.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Icarus - Volume 226, Issue 2, November–December 2013, Pages 1595-1611
نویسندگان
, , , , , , ,