کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10877002 1075900 2005 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effect of salt and osmotic stress on changes in polyamine content and arginine decarboxylase activity in Lupinus luteus seedlings
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم زراعت و اصلاح نباتات
پیش نمایش صفحه اول مقاله
Effect of salt and osmotic stress on changes in polyamine content and arginine decarboxylase activity in Lupinus luteus seedlings
چکیده انگلیسی
The effects of NaCl (260 mM) and sorbitol (360 mM) isoosmotic stresses on polyamine titers in lupin (Lupinus luteus L. var. Ventus) in relation to organ-specific responses were investigated. Analysis showed that during the first few hours (4 h) of salt and osmotic stress higher amounts of putrescine (Put) and spermidine (Spd) were accumulated in the roots and leaves of lupin seedlings. After exposing the plants to a longer duration (24 h) of exposure to NaCl, the level of free Put decreased in roots and cotyledons by about 48% and 54%, respectively, and increased in hypocotyls and leaves by about 27% and 73%, respectively. The level of free Spd also decreased in roots by about 50%, in contrast to the increase of Spd observed in hypocotyls and leaves by about 50% and 70%, respectively. The effect of non-ionic stress on the level of Put and Spd in studied organs of lupin was similar to that of NaCl. Free spermine was at an undetectable level in examined organs. However, in the roots of lupin growing for 24 h in the presence of NaCl and/or sorbitol, the activity of arginine decarboxylase (ADC) (EC 4.1.1.19) increased by about 66% and 80%, respectively. ADC activity in leaves was similar to that observed in the control. Additionally, in the roots and leaves of lupin growing under the stress condition (NaCl or sorbitol), a higher level of polyamines (PAs) bound to microsomal membranes was observed. It is probable that PAs bound to microsomal membranes prevent stress-induced damage. We conclude that both stresses induce biosynthesis of Put and other PAs in the roots, as well as Put accumulation in the leaves, and this may indicate translocation of Put from the roots to the shoot. The possible role of PAs in adaptive mechanisms to stress is discussed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Plant Physiology - Volume 162, Issue 6, 14 June 2005, Pages 662-668
نویسندگان
, ,