کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
11010046 1813004 2018 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Combining Value-at-Risk forecasts using penalized quantile regressions
ترجمه فارسی عنوان
ترکیب پیش بینی ارزش در معرض خطر با استفاده از رگرسیون های کیفی جریمه
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
چکیده انگلیسی
Penalized quantile regressions are proposed for the combination of Value-at-Risk forecasts. The primary reason for regularization of the quantile regression estimator with the elastic net, lasso and ridge penalties is multicollinearity among the standalone forecasts, which results in poor forecast performance of the non-regularized estimator due to unstable combination weights. This new approach is applied to combining the Value-at-Risk forecasts of a wide range of frequently used risk models for stocks comprising the Dow Jones Industrial Average Index. Within a thorough comparison analysis, the penalized quantile regressions perform better in terms of backtesting and tick losses than the standalone models and several competing forecast combination approaches. This is particularly evident during the global financial crisis of 2007-2008.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Econometrics and Statistics - Volume 8, October 2018, Pages 56-77
نویسندگان
,