کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1145670 1489677 2014 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A variable selection criterion for linear discriminant rule and its optimality in high dimensional and large sample data
ترجمه فارسی عنوان
معیار انتخاب متغیر برای قانون خطی تبعیضی و بهینه بودن آن در داده های داده های نمونه ای بزرگ و بزرگ
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
چکیده انگلیسی

In this paper, we suggest the new variable selection procedure, called MEC, for linear discriminant rule in the high dimensional and large sample setup. MEC is derived as a second-order unbiased estimator of the misclassification error probability of the linear discriminant rule (LDR). It is shown that MEC not only asymptotically decomposes into ‘fitting’ and ‘penalty’ terms like AIC and Mallows CpCp, but also possesses an asymptotic optimality in the sense that MEC achieves the smallest possible conditional probability of misclassification in candidate variable sets. Through simulation studies, it is shown that MEC has good performances in the sense of selecting the true variable sets.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 123, January 2014, Pages 364–379
نویسندگان
, ,