کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1162810 | 1490897 | 2016 | 8 صفحه PDF | دانلود رایگان |

• Optical genosensors detect fumonisin producing Fusarium species in maize samples.
• Oligonucleotide probes designed on the intergenic spacer region of rDNA can distinguish between closely related species.
• Sandwich hybridization assay with magnetic microbeads allows species-specific detection of Fusarium spp. directly from PCR.
Plant-pathogenic Fusarium species, Fusarium verticillioides and Fusarium proliferatum, are the major producers of fumonisins which are one of the most common mycotoxins found in maize. Herein, we report the development of specific and sensitive genosensors for detecting these two closely related Fusarium species in food samples. The sensors are based on species-specific capture and detection probes, which bind to the intergenic spacer region of rDNA (IGS). Oligonucleotide functionalized magnetic microbeads are used to capture the target DNA which is then detected using biotinylated detection probes and a streptavidin-coupled label. The developed genosensors had detection limits of 1.8 pM and 3.0 pM for F. proliferatum and F. verticillioides, respectively, using synthetic DNA targets. Furthermore, the biosensors were used to analyze natural fungal contamination of commercial maize samples. After amplification of the genomic DNA the sensors detected the presence of the fungi, in accordance with previous results obtained with PCR. No cross-reactivity between F. verticillioides and F. proliferatum, or other fungi species tested, was observed. The developed biosensors can provide a valuable tool to evaluate the potential for mycotoxin contamination in conditions where detection of mycotoxins directly is challenging.
Figure optionsDownload as PowerPoint slide
Journal: Analytica Chimica Acta - Volume 935, 7 September 2016, Pages 231–238