کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1163385 1490941 2015 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Direct analysis of ultra-trace semiconductor gas by inductively coupled plasma mass spectrometry coupled with gas to particle conversion-gas exchange technique
ترجمه فارسی عنوان
تجزیه و تحلیل مستقیم گاز نیمه هادی فوق العاده ریز با اسپکترومتر جرم پلاسما همراه با القایی همراه با تکنیک تبادل گاز به گاز ذرات
کلمات کلیدی
تبدیل گاز به ذرات، تبادل گاز، طیف سنجی جرمی پلاسما به صورت القایی، گاز نیمه هادی، توزیع اندازه ذرات، تجزیه و تحلیل مستقیم
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
چکیده انگلیسی


• Direct analysis of AsH3 and PH3 in ambient air was examined by GPD-GED-ICPMS.
• Particle size distribution of generated particles from GPD was evaluated by SMPS.
• Stable ICPMS signals were obtained with continuous gas introduction.
• Linear regression line was obtained between ICPMS intensity vs gas concentration.
• Sufficiently lower LODs were obtained with respect to required concentrations.

An inductively coupled plasma mass spectrometry (ICPMS) coupled with gas to particle conversion-gas exchange technique was applied to the direct analysis of ultra-trace semiconductor gas in ambient air. The ultra-trace semiconductor gases such as arsine (AsH3) and phosphine (PH3) were converted to particles by reaction with ozone (O3) and ammonia (NH3) gases within a gas to particle conversion device (GPD). The converted particles were directly introduced and measured by ICPMS through a gas exchange device (GED), which could penetrate the particles as well as exchange to Ar from either non-reacted gases such as an air or remaining gases of O3 and NH3. The particle size distribution of converted particles was measured by scanning mobility particle sizer (SMPS) and the results supported the elucidation of particle agglomeration between the particle converted from semiconductor gas and the particle of ammonium nitrate (NH4NO3) which was produced as major particle in GPD. Stable time-resolved signals from AsH3 and PH3 in air were obtained by GPD-GED-ICPMS with continuous gas introduction; however, the slightly larger fluctuation, which could be due to the ionization fluctuation of particles in ICP, was observed compared to that of metal carbonyl gas in Ar introduced directly into ICPMS. The linear regression lines were obtained and the limits of detection (LODs) of 1.5 pL L−1 and 2.4 nL L−1 for AsH3 and PH3, respectively, were estimated. Since these LODs revealed sufficiently lower values than the measurement concentrations required from semiconductor industry such as 0.5 nL L−1 and 30 nL L−1 for AsH3 and PH3, respectively, the GPD-GED-ICPMS could be useful for direct and high sensitive analysis of ultra-trace semiconductor gas in air.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Analytica Chimica Acta - Volume 891, 3 September 2015, Pages 73–78
نویسندگان
, , , , ,