کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1163391 1490941 2015 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Intercalation of quantum dots as the new signal acquisition and amplification platform for sensitive electrochemiluminescent detection of microRNA
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Intercalation of quantum dots as the new signal acquisition and amplification platform for sensitive electrochemiluminescent detection of microRNA
چکیده انگلیسی


• A new class of signal amplification tag is employed to simple detect MicroRNA and can be applied for real sample analysis.
• The signal acquisition way by QDs intercalation into the RNA/DNA hybrids can overcome the drawbacks of labeling and embedding.
• The method shows high selectivity toward the target microRNA and can be applied for real sample analysis.

Herein, we report on the development of a simple and sensitive biosensor for electrochemiluminescent (ECL) detection of microRNAs (miRNA) based on the intercalation of doxorubicin-conjugated quantum dot nanoparticles (Dox-QDs) into the DNA/RNA hybrids as the new signal acquisition and amplification platform. The thiolated DNA capture probes are self-assembled onto gold electrodes via   the formation of Au–S bonds. The sensing surface is then incubated in a target miRNA-containing buffer solution to form the double-stranded duplexes. In this case, massive Dox-QDs can intercalate into the base pairs of the hybrid duplexes, resulting in amplified ECL emissions due to their reactions with the coreactant S2O82−S2O82− and the dissolved oxygen in the detection buffer. The increase in ECL intensity proportional to the amount of target miRNA in the testing samples serves as the quantitative basis. Different from traditional QDs-based methods such as labeling and embedding, our sensor involves the employment of the intercalation of the Dox-QDs as the signal acquisition and amplification platform. The combination of the QDs intercalation amplification with the high sensitivity of the ECL technique enables us to detect miRNA down to the low femtomolar level. Moreover, our method is also coupled with acceptable selectivity in discriminating the target miRNA and against its family members as well as other interference sequence, and can monitor miRNAs from human prostate carcinoma (22Rv1) cell lysates.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Analytica Chimica Acta - Volume 891, 3 September 2015, Pages 130–135
نویسندگان
, , , ,