کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1163671 | 1490979 | 2015 | 7 صفحه PDF | دانلود رایگان |
• Exhaustive extraction of peptides achieved with a flat membrane-based EME device.
• The system-current was reduced and stabilized by increasing the SLM volume.
• The recoveries of peptides were increased with the increasing of the SLM volume.
• The average system-current was below 50 μA for a 25 min EME with a voltage of 15 V.
This fundamental work illustrates for the first time the possibility of exhaustive extraction of peptides using electromembrane extraction (EME) under low system-current conditions (<50 μA). Bradykinin acetate, angiotensin II antipeptide, angiotensin II acetate, neurotensin, angiotensin I trifluoroacetate, and leu-enkephalin were extracted from 600 μL of 25 mM phosphate buffer (pH 3.5), through a supported liquid membrane (SLM) containing di-(2-ethylhexyl)-phosphate (DEHP) dissolved in an organic solvent, and into 600 μL of an acidified aqueous acceptor solution using a thin flat membrane-based EME device. Mass transfer of peptides across the SLM was enhanced by complex formation with the negatively charged DEHP. The composition of the SLM and the extraction voltage were important factors influencing recoveries and current with the EME system. 1-nonanol diluted with 2-decanone (1:1 v/v) containing 15% (v/v) DEHP was selected as a suitable SLM for exhaustive extraction of peptides under low system-current conditions. Interestingly, increasing the SLM volume from 5 to 10 μL was found to be beneficial for stable and efficient EME. The pH of the sample strongly affected the EME process, and pH 3.5 was found to be optimal. The EME efficiency was also dependent on the acceptor solution composition, and the extraction time was found to be an important element for exhaustive extraction. When EME was carried out for 25 min with an extraction voltage of 15 V, the system-current across the SLM was less than 50 μA, and extraction recoveries for the model peptides were in the range of 77–94%, with RSD values less than 10%.
Exhaustive extraction of peptides was achieved using a flat membrane-based electromembrane extraction device under low system-current conditions.Figure optionsDownload as PowerPoint slide
Journal: Analytica Chimica Acta - Volume 853, 1 January 2015, Pages 328–334