کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1163680 1490979 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Novel algorithm for simultaneous component detection and pseudo-molecular ion characterization in liquid chromatography–mass spectrometry
ترجمه فارسی عنوان
الگوریتم رمان برای تشخیص مؤلفه همزمان و خصوصیات یونهای شبه مولکولی در طیف سنجی جرمی کروماتوگرافی مایع
کلمات کلیدی
تشخیص کامپوننت، یون شبه مولکولی، توده یونو-ایزوتوپ، توزیع ایزوتوپیک، محصولات طبیعی
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
چکیده انگلیسی


• Novel stepwise component detection algorithm (SCDA) for LC–MS datasets.
• New isotopic distribution and adduct-ion models for mass spectra.
• Automatic component classification based on adduct-ion and isotopic distributions.

Resolving components and determining their pseudo-molecular ions (PMIs) are crucial steps in identifying complex herbal mixtures by liquid chromatography–mass spectrometry. To tackle such labor-intensive steps, we present here a novel algorithm for simultaneous detection of components and their PMIs. Our method consists of three steps: (1) obtaining a simplified dataset containing only mono-isotopic masses by removal of background noise and isotopic cluster ions based on the isotopic distribution model derived from all the reported natural compounds in dictionary of natural products; (2) stepwise resolving and removing all features of the highest abundant component from current simplified dataset and calculating PMI of each component according to an adduct-ion model, in which all non-fragment ions in a mass spectrum are considered as PMI plus one or several neutral species; (3) visual classification of detected components by principal component analysis (PCA) to exclude possible non-natural compounds (such as pharmaceutical excipients). This algorithm has been successfully applied to a standard mixture and three herbal extract/preparations. It indicated that our algorithm could detect components’ features as a whole and report their PMI with an accuracy of more than 98%. Furthermore, components originated from excipients/contaminants could be easily separated from those natural components in the bi-plots of PCA.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Analytica Chimica Acta - Volume 853, 1 January 2015, Pages 402–414
نویسندگان
, , , , , , ,