کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1163761 | 1645285 | 2015 | 6 صفحه PDF | دانلود رایگان |
• It has been found that copper-based MOFs possess peroxidase-like activity.
• Thiamine was used as fluorescent substrate for copper-based MOFs as peroxidase mimic.
• A simple and sensitive fluorescent method for thiamine detection was developed.
Metal-organic frameworks (MOFs) with tunable structures and properties have recently been emerged as very interesting functional materials. However, the catalytic properties of MOFs as enzymatic mimics remain to be further investigated. In this work, we for the first time demonstrated the peroxidase-like activity of copper-based MOFs (HKUST-1) by employing thiamine (TH) as a peroxidase substrate. In the presence of H2O2, HKUST-1 can catalyze efficiently the conversion of non-fluorescent TH to strong fluorescent thiochrome. The catalytic activity of HKUST-1 is highly dependent on the temperature, pH and H2O2 concentrations. As a peroxidase mimic, HKUST-1 not only has the features of low cost, high stability and easy preparation, but also follows Michaelis–Menten behaviors and shows stronger affinity to TH than horseradish peroxidase (HRP). Based on the peroxidase-like activity of HKUST-1, a simple and sensitive fluorescent method for TH detection has been developed. As low as 1 μM TH can be detected with a linear range from 4 to 700 μM. The detection limit for TH is about 50 fold lower than that of HRP-based fluorescent assay. The proposed method was successfully applied to detect TH in tablets and urine samples and showed a satisfactory result. We believed that the present work could improve the understanding of catalytic behaviors of MOFs as enzymatic mimics and find out a wider application in bioanalysis.
HKUST-1 as a peroxidase mimic can catalyze the conversion of non-fluorescent thiamine to high fluorescent thiochrome in the presence of H2O2.Figure optionsDownload as PowerPoint slide
Journal: Analytica Chimica Acta - Volume 856, 26 January 2015, Pages 90–95