کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1164186 1490973 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Two dimensional assisted liquid chromatography – a chemometric approach to improve accuracy and precision of quantitation in liquid chromatography using 2D separation, dual detectors, and multivariate curve resolution
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Two dimensional assisted liquid chromatography – a chemometric approach to improve accuracy and precision of quantitation in liquid chromatography using 2D separation, dual detectors, and multivariate curve resolution
چکیده انگلیسی


• A novel method for quantitation in LC × LC is proposed based on use of dual detectors.
• Curve resolution was carried out on data from both detectors.
• The combined use of data from both detectors lead to improved quantitative results.
• In some cases, use of only first dimension data results in improved quantification.

Comprehensive two-dimensional liquid chromatography (LC × LC) is rapidly evolving as the preferred method for the analysis of complex biological samples owing to its much greater resolving power compared to conventional one-dimensional (1D-LC). While its enhanced resolving power makes this method appealing, it has been shown that the precision of quantitation in LC × LC is generally not as good as that obtained with 1D-LC. The poorer quantitative performance of LC × LC is due to several factors including but not limited to the undersampling of the first dimension and the dilution of analytes during transit from the first dimension (1D) column to the second dimension (2D) column, and the larger relative background signals. A new strategy, 2D assisted liquid chromatography (2DALC), is presented here. 2DALC makes use of a diode array detector placed at the end of each column, producing both multivariate 1D and two-dimensional (2D) chromatograms. The increased resolution of the analytes provided by the addition of a second dimension of separation enables the determination of analyte absorbance spectra from the 2D detector signal that are relatively pure and can be used to initiate the treatment of data from the first dimension detector using multivariate curve resolution–alternating least squares (MCR–ALS). In this way, the approach leverages the strengths of both separation methods in a single analysis: the 2D detector data is used to provide relatively pure analyte spectra to the MCR–ALS algorithm, and the final quantitative results are obtained from the resolved 1D chromatograms, which has a much higher sampling rate and lower background signal than obtained in conventional single detector LC × LC, to obtain accurate and precise quantitative results. It is shown that 2DALC is superior to both single detector selective or comprehensive LC × LC and 1D-LC for quantitation of compounds that appear as severely overlapped peaks in the 1D chromatogram – this is especially true in the case of untargeted analyses. We also anticipate that 2DALC will provide superior quantitation in targeted analyses in which unknown interfering compounds overlap with the targeted compound(s). When peaks are significantly overlapped in the first dimension, 2DALC can decrease the error of quantitation (i.e., improve the accuracy by up to 14-fold compared to 1D-LC and up to 3.8-fold compared to LC × LC with a single multivariate detector). The degree of improvement in performance varies depending upon the degree of peak overlap in each dimension and the selectivities of the spectra with respect to one another and the background, as well as the extent of analyte dilution prior to the 2D column.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Analytica Chimica Acta - Volume 859, 15 February 2015, Pages 87–95
نویسندگان
, , , ,