کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1165963 | 1491073 | 2013 | 15 صفحه PDF | دانلود رایگان |

Alongside the validation, the concept of applicability domain (AD) is probably one of the most important aspects which determine the quality as well as reliability of the established quantitative structure–activity relationship (QSAR) models. To date, a variety of approaches for AD estimation have been devised which can be applied to particular type of QSAR models and their practical utilization is extensively elaborated in the literature. The present study introduces a novel, simple, and effective distance-based method for estimation of the AD in case of developed and validated predictive counter-propagation artificial neural network (CP ANN) models through a proficient exploitation of the Euclidean distance (ED) metric in the structure-representation vector space. The performance of the method was evaluated and explained in a case study by using a pre-built and validated CP ANN model for prediction of the transport activity of the transmembrane protein bilitranslocase for a diverse set of compounds. The method was tested on two more datasets in order to confirm its performance for evaluation of the applicability domain in CP ANN models. The chemical compounds determined as potential outliers, i.e., outside of the CP ANN model AD, were confirmed in a comparative AD assessment by using the leverage approach. Moreover, the method offers a graphical depiction of the AD for fast and simple determination of the extreme points.
Figure optionsDownload as PowerPoint slideHighlights
► The concept of applicability domain (AD) in QSAR modeling is discussed.
► The AD assessment method for nonlinear neural network predictive models is proposed.
► The counter-propagation artificial neural network (CP-ANN) was applied for modeling.
► Minimal Euclidean distance space (MEDS) of CP-ANN model was defined and analyzed.
► The resulting outliers coincide with those from linear models (leverage based AD).
Journal: Analytica Chimica Acta - Volume 759, 8 January 2013, Pages 28–42