کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1166240 | 960488 | 2011 | 8 صفحه PDF | دانلود رایگان |

This paper describes the development of a derivatization procedure — silylation using N,O-bis(trimethylsilyl)-trifluoroacetamide (BSTFA) — for the simultaneous GC–MS analysis of a wide range of water-soluble organics in atmospheric aerosols. The reaction operating conditions were optimized using the response surface methodology (RSM) including central composite design (CCD) in order to achieve the highest response for a large number of dicarboxylic acids and sugars. The factors considered were: (i) reaction temperature (50–90 °C), (ii) the reaction duration (60–120 min), (iii) reagent concentrations (10–100% of the total solution volume) and (iv) pyridine concentration (0–50% of the derivatization reagent). On the basis of RSM and experimental evidence, the optimum derivatization conditions were defined as reaction temperature of 75 °C, reaction duration of 70 min, BSTFA reagent concentration of 55% and pyridine concentration of 35%. The optimized protocol was extended to a broader range of 22 target analytes that are relevant chemical markers, i.e., 15 carboxylic acids and 7 sugars. In addition, the applicability of the optimized procedure was verified in environmental matrices from PM filters collected under different conditions, i.e., different seasons (summer vs. winter), different sampling sites (urban vs. rural), different particle size dimensions (PM2.5 vs. PM1).
Journal: Analytica Chimica Acta - Volume 689, Issue 2, 18 March 2011, Pages 257–264