کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1166946 | 960519 | 2011 | 9 صفحه PDF | دانلود رایگان |

A rapid and effective method for enantioselective determination of simeconazole enantiomers in food products (cucumber, tomato, apple, pear, wheat and rice) has been developed. The enantiomers were resolved by capillary gas chromatography (GC) using a commercial chiral column (BGB-172) and a temperature program from 150 °C (held for 1 min) and then raised at 10 °C min−1 to 240 °C (held for 10 min). This enantioselective gas chromatographic separation was combined with a clean-up/enrichment procedure based on the modification of QuEChERS (quick, easy, cheap, effective, rugged and safe) method. Co-extractives were removed with graphitized carbon black/primary secondary amine (GCB/PSA) solid-phase extraction (SPE) cartridges using acetonitrile:toluene (3:1, v/v) as eluent. Gas chromatography/ion trap mass spectrometry (GC–ITMS) with electron ionization (EI) was then used for qualitative and quantitative determination of the simeconazole enantiomers. Two precursor-to-product ion transitions (m/z 121–101 and 195–153) with the best signal intensity were chosen to build the multiple-reaction monitoring (MRM) acquisition method. The limits of detection for each enantiomer of simeconazole in six food products ranged between 0.4 and 0.9 μg kg−1, which were much lower than maximum residue levels (MRLs) established by Japan. The methodology was successfully applied for the enantioselective analysis of simeconazole enantiomers in real samples, indicating its efficacy in investigating the environmental stereochemistry of simeconazole in food matrix.
Figure optionsDownload as PowerPoint slideHighlights
• Simeconazole enantiomers were baseline separated by gas chromatography.
• Optical pure enantiomer was prepared and their elution order was distinguished.
• Clean-up/enrichment procedure was based on the modification of QuEChERS method.
• Cleanup step was further improved by solid phase extraction (SPE) technology.
• Analysis of samples was accomplished by GC–MS/MS.
Journal: Analytica Chimica Acta - Volume 702, Issue 1, 19 September 2011, Pages 127–135