کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1171002 960699 2007 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
How to construct a multiple regression model for data with missing elements and outlying objects
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
How to construct a multiple regression model for data with missing elements and outlying objects
چکیده انگلیسی

The aim of this study is to show the usefulness of robust multiple regression techniques implemented in the expectation maximization framework in order to model successfully data containing missing elements and outlying objects. In particular, results from a comparative study of partial least squares and partial robust M-regression models implemented in the expectation maximization algorithm are presented. The performances of the proposed approaches are illustrated on simulated data with and without outliers, containing different percentages of missing elements and on a real data set. The obtained results suggest that the proposed methodology can be used for constructing satisfactory regression models in terms of their trimmed root mean squared errors.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Analytica Chimica Acta - Volume 581, Issue 2, 9 January 2007, Pages 324–332
نویسندگان
, , , ,