کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1172532 | 1491184 | 2006 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Discrimination of wines based on 2D NMR spectra using learning vector quantization neural networks and partial least squares discriminant analysis
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The learning vector quantization (LVQ) neural network is a useful tool for pattern recognition. Based on the network weights obtained from the training set, prediction can be made for the unknown objects. In this paper, discrimination of wines based on 2D NMR spectra is performed using LVQ neural networks with orthogonal signal correction (OSC). OSC has been proposed as a data preprocessing method that removes from X information not correlated to Y. Moreover, the partial least squares discriminant analysis (PLS-DA) method has also been used to treat the same data set. It has been found that the OSC–LVQ neural networks method gives slightly better prediction results than OSC–PLS-DA
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Analytica Chimica Acta - Volume 558, Issues 1–2, 3 February 2006, Pages 144–149
Journal: Analytica Chimica Acta - Volume 558, Issues 1–2, 3 February 2006, Pages 144–149
نویسندگان
Saeed Masoum, Delphine Jouan-Rimbaud Bouveresse, Joseph Vercauteren, Mehdi Jalali-Heravi, Douglas Neil Rutledge,