کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1180127 | 1491522 | 2016 | 7 صفحه PDF | دانلود رایگان |

• This paper deals with large-class-number classification (LCNC) problems.
• LCNC and related solutions have been rarely discussed in chemometrics.
• A new method for LCNC was proposed using an ensemble strategy (ES).
• ES was shown to be superior to two traditional methods in discriminating 25 teas.
Large-class-number classification (LCNC) would bring new challenges to pattern recognition due to increased data complexity and class overlapping. In this study, a novel ensemble strategy (ES) was proposed to tackle LCNC problems. By combining the One-Versus-Rest (OVR) and One-Versus-One (OVO) strategies to design a set of classifiers with reduced class numbers, ES assigns a new object to the class receiving the most votes. When two or more classes obtain the most votes, an additional OVR model is developed to discriminate them. ES, OVR, OVO and the softmax function were investigated to discriminate the geographical origins of 25 green tea samples using near-infrared (NIR) spectroscopy and Partial Least Squares Discriminant Analysis (PLSDA). Using the Standard Normal Variate (SNV) as a spectral scatter correction technique, the total accuracy was 0.6468 for OVR-PLSDA, 0.8494 for OVO-PLSDA, 0.9299 for PLSDA-softmax, and 0.9377 for ES-PLSDA, respectively. Using other preprocessing methods and multiple random splitting of the data sets obtained the similar results. The poor performance of OVR can be attributed to the increased possibility of class overlapping and high sub-model complexity. OVO was less influenced by LCNC because it is based on a set of relatively simpler two-class classifiers. PLSDA-softmax could overcome the class overlapping by nonlinear transformations. ES was demonstrated to be capable of extracting more useful information from sub-models and achieved improved performance in LCNC.
Journal: Chemometrics and Intelligent Laboratory Systems - Volume 157, 15 October 2016, Pages 43–49