کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1180217 1491571 2006 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bagged super wavelets reduction for boosted prostate cancer classification of seldi-tof mass spectral serum profiles
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Bagged super wavelets reduction for boosted prostate cancer classification of seldi-tof mass spectral serum profiles
چکیده انگلیسی

Wavelet based analysis for mass spectrometry (MS) profiles of three groups of patients are analyzed for the purpose of developing a classification model. The first step in our model uses a DWT for feature extraction, using a linear combination of Symlets, Daubechies and Coiflets wavelet bases – collectively known as a super wavelet. Random Forests and Treeboost are then used to analyze the super wavelet coefficients to form the classification model. The method is illustrated using the publicly available prostate SELDI-TOF MS data from the American National Cancer Institute (NCI). The NCI data consists of 322 MS profiles with 15154 M / Z ratios, comprising of 69 malignant, 190 benign and 63 control patients, which we randomly divided into 70% training and 30% testing. From the Random Forest models, the super wavelet performed 2.7% to 5.7% better than other single wavelet types to give a 100% test set prediction rate for cancerous patients.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemometrics and Intelligent Laboratory Systems - Volume 82, Issues 1–2, 26 May 2006, Pages 2–7
نویسندگان
, , , ,