کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1180966 | 1491549 | 2013 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Missing values in multi-level simultaneous component analysis
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Component analysis of data with missing values is often performed with algorithms of iterative imputation. However, this approach is prone to overfitting problems. As an alternative, Josse et al. (2009) proposed a regularized algorithm in the framework of Principal Component Analysis (PCA). Here we use a similar approach to deal with missing values in multi-level simultaneous component analysis (MLSCA), a method dedicated to explore multivariate multilevel data (e.g., individuals nested within groups). We discuss the properties of the regularized algorithm, the expected behavior under the missing (completely) at random (M(C)AR) mechanisms and possible dysmonotony problems. We explain the importance of separating the deviations due to sampling fluctuations and due to missing data. On the basis of a comparative extensive simulation study, we show that the regularized method generally performs well and clearly outperforms an EM-type of algorithm.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemometrics and Intelligent Laboratory Systems - Volume 129, 15 November 2013, Pages 21-32
Journal: Chemometrics and Intelligent Laboratory Systems - Volume 129, 15 November 2013, Pages 21-32
نویسندگان
Julie Josse, Marieke E. Timmerman, Henk A.L. Kiers,