کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1181445 | 962939 | 2017 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An adapted version of the element-wise weighted total least squares method for applications in chemometrics
ترجمه فارسی عنوان
یک نسخه سازگار از روش حداقل مربعات با وزن عنصری برای برنامه های کاربردی در شیمی معیار
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آنالیزی یا شیمی تجزیه
چکیده انگلیسی
The Maximum Likelihood PCA (MLPCA) method has been devised in chemometrics as a generalization of the well-known PCA method in order to derive consistent estimators in the presence of errors with known error distribution. For similar reasons, the Total Least Squares (TLS) method has been generalized in the field of computational mathematics and engineering to maintain consistency of the parameter estimates in linear models with measurement errors of known distribution. In a previous paper [M. Schuermans, I. Markovsky, P.D. Wentzell, S. Van Huffel, On the equivalance between total least squares and maximum likelihood PCA, Anal. Chim. Acta, 544 (2005), 254-267], the tight equivalences between MLPCA and Element-wise Weighted TLS (EW-TLS) have been explored. The purpose of this paper is to adapt the EW-TLS method in order to make it useful for problems in chemometrics. We will present a computationally efficient algorithm and compare this algorithm with the standard EW-TLS algorithm and the MLPCA algorithm in computation time and convergence behaviour on chemical data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemometrics and Intelligent Laboratory Systems - Brought to you by:GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING for Women Renewal due by 31 Dec 2017
Journal: Chemometrics and Intelligent Laboratory Systems - Brought to you by:GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING for Women Renewal due by 31 Dec 2017
نویسندگان
M. Schuermans, I. Markovsky, S. Van Huffel,