کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1195437 | 1492906 | 2008 | 11 صفحه PDF | دانلود رایگان |

Extensive 15N labeling and multiple-stage tandem mass spectrometry were used to investigate the fragmentation pathways of the model peptide FGGFL during low-energy collision-induced-dissociation (CID) in an ion-trap mass spectrometer. Of particular interest was formation of a4 from b4 and a4* (a4-NH3) from a4 ions correspondingly, and apparent rearrangement and scrambling of peptide sequence during CID. It is suggested that the original FGGFoxab4 structure undergoes b-type scrambling to form GGFFoxa. These two isomers fragment further by elimination of CO and 14NH3 or 15NH3 to form the corresponding a4and a4* isomers, respectively. For (15N-F)GGFL and FGG(15N-F)L the a4* ion population appears as two distinct peaks separated by 1 mass unit. These two peaks could be separated and fragmented individually in subsequent CID stages to provide a useful tool for exploration of potential mechanisms along the a4 → a4* pathway reported previously in the literature (Vachet et al. J. Am. Chem. Soc.1997, 119, 5481, and Cooper et al. J. Am. Soc. Mass Spectrom.2006, 17, 1654). These mechanisms result in formally the same a4* structures but differ in the position of the expelled nitrogen atom. Detailed analysis of the observed fragmentation patterns for the separated light and heavy a4* ion fractions of (15N-F)GGFL indicates that the mechanism proposed by Cooper et al. is consistent with the experimental findings, while the mechanism proposed by Vachet et al. cannot account for the labeling data. In addition, a new rearrangement pathway is presented for a4*-CO ions that effectively transfers the former C-terminal amino acid residue to the N-terminus.
Graphical Abstract15N and 2H labeling and theoretical calculations elucidate the structure and mechanisms of formation of an, an* and related peptide fragments.Figure optionsDownload high-quality image (51 K)Download as PowerPoint slide
Journal: Journal of the American Society for Mass Spectrometry - Volume 19, Issue 12, December 2008, Pages 1788–1798