کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1197602 | 1492979 | 2012 | 8 صفحه PDF | دانلود رایگان |

Cellulose and cellulose/montmorillonite K10 mixtures of different ratio (9:1, 3:1, 1:1) were subjected to pyrolysis at temperatures from 350 to 500 °C with different heating rate (10 °C/min, 100 °C/s) to produce bio-oil and selected chemicals with high yield. The pyrolytic oil yield was in the range of 46–73.5 wt% depending on the temperature, the heating rate and the amount of catalyst. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil (84 wt%). The blending cellulose with increasing amount of montmorillonite K10 results in significant, linear decrease in bio-oil yield. The great influence of montmorillonite K10 amount on the distribution of bio-oil components was observed at 450 °C with a heating rate of 100 °C/s. The addition of catalyst to cellulose promotes the formation of 2-furfural (FF), various furan derivatives, levoglucosenone (LGO) and (1R,5S)-1-hydroxy-3,6-dioxabicyclo-[3.2.1]octan-2-one (LAC). Simultaneously, the share of levoglucosan (LG) in bio-oil decreases from 6.92 wt% and is less than 1 wt% when cellulose:MK10 (1:1, w/w) mixture at 450 °C is rapidly pyrolyzed. Additionally, several other compounds have been identified but in minor quantities. Their contributions in bio-oil also depend on the amount of catalyst.
► Slow and fast pyrolysis of cellulose with montmorillonite K10 (MK10) as a acid catalyst.
► Montmorillonite K10 affects the yield and the composition of bio-oil from cellulose depending on the pyrolysis conditions.
► The higher addition of MK10, the deeper transformation of levoglucosan and the productivity of furfural and hydroxylactone.
Journal: Journal of Analytical and Applied Pyrolysis - Volume 98, November 2012, Pages 115–122