کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1209868 1493764 2006 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Transition from creeping via viscous-inertial to turbulent flow in fixed beds
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Transition from creeping via viscous-inertial to turbulent flow in fixed beds
چکیده انگلیسی

This review is concerned with the analysis of flow regimes in porous media, in particular, in fixed beds of spherical particles used as reactors in engineering applications, or as separation units in liquid chromatography. A transition from creeping via viscous-inertial to turbulent flow is discussed based on macro-scale transport behaviour with respect to the pressure drop–flow rate dependence, in particular, the deviation from Darcy's law, as well as direct microscopic data which reflect concomitant changes in the pore-level hydrodynamics. In contrast to the flow behaviour in straight pipes, the transition from laminar to turbulent flow in fixed particulate beds is not sharp, but proceeds gradually through a viscous-inertial flow regime. The onset of this steady, nonlinear regime and increasing role of inertial forces is macroscopically manifested in the failure of Darcy's law to describe flow through fixed beds at higher Reynolds numbers. While the physical reasons for this failure still are not completely understood, it is not caused by turbulence which occurs at Reynolds numbers about two orders of magnitude above those for which a deviation from Darcy's law is observed. Microscopic analysis shows that this steady, nonlinear flow regime is characterized by the development of an inertial core in the pore-level profile, i.e., at increasing Reynolds number velocity profiles in individual pores become flatter towards the center of the pores, while the velocity gradient increases close to the solid–liquid interface. Further, regions with local backflow and stationary eddies are demonstrated for the laminar flow regime in fixed beds. The onset of local fluctuations (end of laminar regime) is observed at superficial Reynolds numbers on the order of 100. Complementary analysis of hydrodynamic dispersion suggests that this unsteady flow accelerates lateral equilibration between different velocities in fixed beds which, in turn, reduces spreading in the longitudial (macroscopic flow) direction.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Chromatography A - Volume 1126, Issues 1–2, 8 September 2006, Pages 70–85
نویسندگان
, ,