کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1220633 | 1494617 | 2016 | 11 صفحه PDF | دانلود رایگان |

• Novel pentacyclic triterpene diesters isolated from Calendula officinalis flowers.
• Instability of triterpene mono- and diesters in ion-source makes their MS detection challenging.
• Problem solved by use of APCI and QTOF with specific instrumental settings.
• MS/MS scan with multi-channel averaging for pseudo-molecular ion detection of diesters.
• Non-aqueous C30 RP-HPLC for improved separation of diesters.
Pentacyclic triterpene mono- and diesters have been isolated from Calendula officinalis flowers. GC–MS, APCI-Exactive Orbitrap HR-MS and NMR allowed to identify the triterpene skeleton in various samples (different triterpene mixtures from Calendula n-hexane extract). NMR provided evidence that triterpene diesters are present in the samples as well. However, the corresponding quasi-molecular ions could not be detected by APCI-Exactive Orbitrap HR-MS. Instability of triterpene diesters and loss of a fatty acid residue, respectively, in the ion-source made their MS detection challenging. Thus, a set of new APCI-QTOF-MS methods (using the TripleTOF 5600+ mass spectrometer) were developed which made it eventually possible to solve this problem and confirm the diester structures by MS via quasi-molecular ion [M + H]+ detection. Direct infusion APCI-QTOF MS experiments in MS/MS high sensitivity scan mode with low collision energy and multi-channel averaging acquisition (MCA) allowed the detection of quasi-molecular ions of triterpene diesters for the first time and unequivocally confirmed the presence of faradiol 3,16-dimyristate and -dipalmitate, as well as the corresponding mixed diesters faradiol 3-myristate,16-palmitate and faradiol 3-palmitate,16-myristate. Preferential loss of the fatty acid in 16-position made it possible to distinguish the mixed diesters by MS/MS spectra. Their chromatographic separations turned out to be challenging due to their bulkiness and extended molecular dimensions. However, separation could be achieved by an uncommon non-aqueous RPLC mode with an in-house synthesized C30 phase. Finally, two (U)HPLC-APCI-QTOF-MS methods with C18- and C30-based non-aqueous RPLC provided suitable, sensitive assays to monitor the presence of monoesters and diesters of various triterpenes (faradiol, maniladiol, arnidiol, arnitriol A and lupane-3β,16β,20-triol esters) in the n-hexane extract of C. officinalis with high mass resolution and good mass accuracy.
Figure optionsDownload as PowerPoint slide
Journal: Journal of Pharmaceutical and Biomedical Analysis - Volume 118, 25 January 2016, Pages 195–205