کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1229803 | 1495217 | 2016 | 14 صفحه PDF | دانلود رایگان |

• Optimized geometry and vibrational assignments with PED were computed by DFT.
• NBO, NMR and UV–Vis spectral analysis were carried out.
• HOMO–LUMO and MEP analysis were made.
• Isotropic chemical shifts were calculated using the GIAO method.
• Local reactivity descriptor such as Fukui functions was calculated.
The FTIR and FT-Raman spectra of 4-(2-Hydroxyethyl) piperazine-1-ethanesulfonic acid were recorded and the structural and spectroscopic data of the molecule in the ground state were calculated using Hartree–Fock and Density Functional Method (B3LYP). The most stable conformer was optimized and the structural and vibrational parameters were determined. With the observed FTIR and FT-Raman data, a complete vibrational band assignment and analysis of the fundamental modes of the compound were carried out. Thermodynamic properties, Mulliken and natural atomic charge distribution were calculated using both Hartree–Fock and Density Functional Method and compared. UV–Visible and HOMO–LUMO analysis were carried out. 1H and 13C NMR chemical shifts of the molecule were calculated using gauge including atomic orbital method and were compared with experimental results. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital analysis. The first order hyperpolarizability (β) and molecular electrostatic potential of the molecule was computed using DFT calculations. The electron density based local reactivity descriptor such as Fukui functions were calculated to explain the chemically reactive site in the molecule.
Figure optionsDownload as PowerPoint slide
Journal: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy - Volume 152, 5 January 2016, Pages 509–522