کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1246375 969753 2010 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Carbon nuclear magnetic resonance spectroscopic fingerprinting of commercial gasoline: Pattern-recognition analyses for screening quality control purposes
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Carbon nuclear magnetic resonance spectroscopic fingerprinting of commercial gasoline: Pattern-recognition analyses for screening quality control purposes
چکیده انگلیسی

In this work, the combination of carbon nuclear magnetic resonance (13C NMR) fingerprinting with pattern-recognition analyses provides an original and alternative approach to screening commercial gasoline quality. Soft Independent Modelling of Class Analogy (SIMCA) was performed on spectroscopic fingerprints to classify representative commercial gasoline samples, which were selected by Hierarchical Cluster Analyses (HCA) over several months in retails services of gas stations, into previously quality-defined classes. Following optimized 13C NMR-SIMCA algorithm, sensitivity values were obtained in the training set (99.0%), with leave-one-out cross-validation, and external prediction set (92.0%). Governmental laboratories could employ this method as a rapid screening analysis to discourage adulteration practices.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Talanta - Volume 82, Issue 1, 30 June 2010, Pages 392–397
نویسندگان
, , ,