کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1269372 1497392 2016 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Designing a hydrogen gas ejector for 5 kW stationary PEMFC system – CFD-modeling and experimental validation
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
Designing a hydrogen gas ejector for 5 kW stationary PEMFC system – CFD-modeling and experimental validation
چکیده انگلیسی


• Ejector modeling with CFD is experimentally validated with humid hydrogen.
• Modeling results deviate on average 60–70% from experimental data.
• Recommendation of turbulence model for ejector design is provided.
• The effect of PEMFC system flow resistance on ejector performance is demonstrated.

Ejectors are durable and inexpensive equipment for realizing hydrogen recirculation in proton exchange membrane fuel cell (PEMFC) systems. In the present work, a hydrogen recirculation ejector targeted for high turndown ratio operation in a 5 kWe PEMFC system was designed, manufactured with 3D-printing, and characterized experimentally with both air and humid hydrogen.The ejector was modeled at the experimental conditions with computational fluid dynamics (CFD) assuming 2D axisymmetric flow and with three turbulence models. A systematic comparison of experimental and simulation results was conducted with humid hydrogen at conditions covering the entire operating map up to 6 bar gauge primary pressure. The simulation results deviate on average 60%–70% from the experimental results, the deviation being less pronounced at conditions relevant in PEMFC applications.The SST k-ω turbulence model was identified to agree best overall with the experimental data while the RNG and Realizable k-ε turbulence models were observed to accurately predict the position of maximum ejector efficiency. Hence, the SST k-ω model is more useful for predicting ejector performance while one of the two k-ε models should be adopted when optimizing ejector design.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Hydrogen Energy - Volume 41, Issue 33, 7 September 2016, Pages 14952–14970
نویسندگان
, , , , ,