کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1277363 1497569 2011 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Preparation and hydrogen storage capacity of highly porous activated carbon materials derived from polythiophene
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
Preparation and hydrogen storage capacity of highly porous activated carbon materials derived from polythiophene
چکیده انگلیسی

Highly porous carbons have been successfully synthesized by chemical activation of polythiophene with KOH. The activation process was performed under relatively mild activation conditions, i. e., a KOH/polymer weight ratio of 2 and reaction temperatures in the 600–850 °C range. The porous carbons thus obtained possess very large surface areas, up to 3000 m2/g, and pore volumes of up to 1.75 cm3/g. The pore size distribution of these carbons can be tuned via modification of the activation temperature. Thus, by increasing the activation temperature from 600 to 850 °C, the nature of the carbons changes gradually from microporous to micro-mesoporous (with small mesopores of up to 2.5 nm). The polythiophene-derived activated carbons are sulfur-doped with sulfur contents in the 3–12 wt% range. The sulfur content decreases at higher activation temperature. The hydrogen storage capacity of these activated carbons, at cryogenic temperature and 20 bar, is up to 5.71 wt% with an estimated maximum hydrogen uptake of 6.64 wt%. Their ease of preparation and high uptake makes the polythiophene-derived carbons attractive hydrogen storage materials.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Hydrogen Energy - Volume 36, Issue 24, December 2011, Pages 15658–15663
نویسندگان
, , ,