کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1282592 1497584 2011 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Physically mixed LiLaNi–Al2O3 and copper as conductive anode catalysts in a solid oxide fuel cell for methane internal reforming and partial oxidation
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
Physically mixed LiLaNi–Al2O3 and copper as conductive anode catalysts in a solid oxide fuel cell for methane internal reforming and partial oxidation
چکیده انگلیسی

Different concentrations of copper are added to LiLaNi–Al2O3 to improve the electronic conductivity property for application as the materials of the anode catalyst layer for solid oxide fuel cells operating on methane. Their catalytic activity for the methane partial oxidation, steam and CO2 reforming reactions at 600–850 °C is systematically investigated. Among the three catalysts, the LiLaNi–Al2O3/Cu (50:50, by weight) catalyst presents the best catalytic activity. Thus, the catalytic stability, carbon deposition and surface conductivity of the LiLaNi–Al2O3/Cu catalyst are further studied in detail. O2-TPO results indicate that the coking resistance of LiLaNi–Al2O3/Cu is satisfactory and comparable to that of LiLaNi–Al2O3. The surface conductivity tests demonstrate it is extremely improved for LiLaNi–Al2O3 catalyst due to the addition of 50 wt.% copper. A cell with LiLaNi–Al2O3/Cu (50:50) catalyst layer is operated on mixtures of methane–O2, methane–H2O and methane–CO2, and peak power densities of 1081, 1036 and 988 mW cm−2 are obtained at 850 °C, respectively, comparable to the cell with LiLaNi–Al2O3 catalyst layer. In summary, the results of the present study indicate that LiLaNi–Al2O3/Cu (50:50) catalysts are highly coking resistant and conductive catalyst layers for solid oxide fuel cells.


► LiLaNi–Al2O3/Cu (50:50) catalyst presents good coking resistance towards methane.
► This catalyst also shows good catalytic activity for methane conversion.
► The addition of copper extremely improves the conductivity of LiLaNi–Al2O3.
► The fuel cell with the LiLaNi–Al2O3/Cu catalyst layer delivers high power output.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Hydrogen Energy - Volume 36, Issue 9, May 2011, Pages 5632–5643
نویسندگان
, , , , , ,