کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1285023 973114 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effect of polytetrafluoroethylene-treatment and microporous layer-coating on the electrical conductivity of gas diffusion layers used in proton exchange membrane fuel cells
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
Effect of polytetrafluoroethylene-treatment and microporous layer-coating on the electrical conductivity of gas diffusion layers used in proton exchange membrane fuel cells
چکیده انگلیسی

The purpose of this study is to investigate the effect of ploytetrafluoroethylene (PTFE)-treatment and microporous layer (MPL)-coating on the electrical conductivity of gas diffusion layers (GDLs), as used in proton exchange membrane fuel cells (PEMFCs). The results show that, for PTFE-treated GDLs, the electrical conductivity in orthogonal in-plane directions is almost invariant with the PTFE loading. On the other hand, the in-plane conductivity of the MPL-coated GDL SGL 10BE (50% PTFE) was found to be higher than that of the counterpart SGL 10BC (25% PTFE) and this was explained by the presence of more conductive carbon particles in the MPL of SGL 10BE. Further, the conductivity of each GDL sample was measured in two perpendicular in-plane directions in order to investigate the in-plane anisotropy. The results show that the electrical conductivity of the GDL sample in one direction is different to that in the other direction by a factor of about two. The contact resistance, the main factor affecting the through-plane conductivity, of PTFE-treated GDLs shows a different trend to the corresponding in-plane conductivity, namely it increases as the PTFE loading increases. On the other hand, the contact resistance of the MPL-coated GDL SGL 10BE (50% PTFE) was found to be lower than that of the counterpart SGL 10BC (25% PTFE) and again this was explained by the presence of more conductive carbon particles in the MPL of SGL 10BE. Also, it was noted that the MPL coating appears to have a positive effect in reducing the contact resistance between the GDL and the bipolar plate. This is most likely due to the compressibility of the MPL layers that allows them to fill in the ‘gaps’ that exist in the surface of the bipolar plates and therefore establishes a good contact between the latter plates and the GDLs. Finally, good curve fitting of the contact resistance as a function of the clamping pressure has been achieved.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Power Sources - Volume 195, Issue 9, 1 May 2010, Pages 2700–2708
نویسندگان
, , , , ,