کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1285518 | 1497927 | 2016 | 8 صفحه PDF | دانلود رایگان |
• SIMS is applied to the assessment of coating materials on positive electrodes in LIB.
• 6Li-enriched LCO modified with 6Li-enriched LWOs are developed.
• Contribution of Li-ion diffusibility of LWOs to interfacial resistance is investigated.
• Amorphous state LWO shows smooth Li-ion diffusion between the LWO and LCO layers.
• Fast Li-ion self-diffusibility into LWO contributes to decreasing interfacial resistance.
To investigate the contribution of lithium-ion diffusibility of lithium tungsten oxides (LWOs) to low interfacial resistance, we fabricate thin-film electrodes of 6Li-enriched LiCoO2 (6LCO) modified with various structure-types of 6Li-enriched LWOs by pulsed laser deposition. The electrodes are subjected to X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and secondary-ion mass spectrometry (SIMS) analyses. XRD reveals that the LWO layers have Li2WO4 structure with rhombohedral and tetragonal symmetries and amorphous states. EIS shows that the lowest interfacial resistance of the positive electrodes is given by the amorphous state, followed in order by the tetragonal and the rhombohedral symmetry, and that the diffusion coefficients of lithium-ions in the electrodes increase in the same order. SIMS demonstrates that the fastest lithium-ion self-diffusibility into the LWOs is found in the amorphous state, followed in order by tetragonal and rhombohedral symmetry. Furthermore, the amorphous state LWO modification shows smooth lithium-ion diffusion between the LWO and LCO layers after the electrochemical test. Conversely, the rhombohedral LWO modification demonstrates congested lithium-ion diffusion between the LWO and LCO layers after the test. Thus, fast lithium-ion self-diffusibility into the LWO-modified LCO contributes to enhancing the diffusion of lithium-ions, resulting in the reduction of interfacial resistance.
Journal: Journal of Power Sources - Volume 305, 15 February 2016, Pages 46–53