کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1289359 973297 2010 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effects of Nafion loading in anode catalyst inks on the miniature direct formic acid fuel cell
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
Effects of Nafion loading in anode catalyst inks on the miniature direct formic acid fuel cell
چکیده انگلیسی

Nafion, within the anode and cathode catalyst layers, plays a large role in the performance of fuel cells, especially during the operation of the direct formic acid fuel cell (DFAFC). Nafion affects the proton transfer in the catalyst layers of the fuel cell, and studies presented here show the effects of three different Nafion loadings, 10 wt.%, 30 wt.% and 50 wt.%. Short term voltage–current measurements using the three different loadings show that 30 wt.% Nafion loading in the anode shows the best performance in the miniature, passive DFAFC. Nafion also serves as a binder to help hold the catalyst nanoparticles onto the proton exchange membrane (PEM). The DFAFC anode temporarily needs to be regenerated by raising the anode potential to around 0.8 V vs. RHE to oxidize CO bound to the surface, but the Pourbaix diagram predicts that Pd will corrode at these potentials. We found that an anode loading of 30 wt.% Nafion showed the best stability, of the three Nafion loadings chosen, for reducing the amount of loss of electrochemically active area due to high regeneration potentials. Only 58% of the area was lost after 600 potential cycles in formic acid compared to 96 and 99% for 10 wt.% and 50 wt.% loadings, respectively. Lastly we present cyclic voltammetry data that suggest that the Nafion adds to the production of CO during oxidation of formic acid for 12 h at 0.3 V vs. RHE. The resulting data showed that an increase in CO coverage was observed with increasing Nafion content in the anode catalyst layer.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Power Sources - Volume 195, Issue 19, 1 October 2010, Pages 6405–6410
نویسندگان
, , ,