کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1289464 973300 2009 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Phase stability and conductivity of Ba1−ySryCe1−xYxO3−δ solid oxide fuel cell electrolyte
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
Phase stability and conductivity of Ba1−ySryCe1−xYxO3−δ solid oxide fuel cell electrolyte
چکیده انگلیسی

The structure, phase stability, and electrical properties of BaCe1−xYxO3−δ (x = 0–0.4) in humidity air and CO2 atmosphere are investigated. XRD results indicate that the BaCe0.9Y0.1O3−δ sample has a symmetric cubic structure, and its phase changes to tetragonal as the Y3+ doping amount increases to 20 mol%. The conductivity of BaCe1−xYxO3−δ increases with temperature, and it depends on the amount of yttrium doping and the atmosphere. BaCe0.8Y0.2O3−δ exhibits the highest conductivity of 0.026 S cm−1 at 750 °C. The activation energy for conductivity depends on yttrium doping amount and temperature. The conductivity of BaCe0.8Y0.2O3−δ is 0.025 S cm−1 in CO2 atmosphere at 750 °C which is 3.8% lower than that in air due to reactions with CO2 and BaCO3 and the CeO2 impure phases formed. The structure of BaCe0.8Y0.2O3−δ is unstable in water and decomposes to Ba(OH)2 and CeO2 phases. It is found that the activation energy of samples in CO2 atmosphere is higher than that of sample in air. Sr-doped Ba1−ySryCe0.8Y0.2O3−δ (y = 0–0.2) is prepared to improve the phase stability of BaCe0.8Y0.2O3−δ in water. The conductivity of Ba0.9Sr0.1Ce0.8Y0.2O3−δ is 0.023 S cm−1 at 750 °C which was 11% lower than that of BaCe0.8Y0.2O3−δ, however, the phase stability of Ba0.9Sr0.1Ce0.8Y0.2O3−δ is much better than that of BaCe0.8Y0.2O3−δ in water.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Power Sources - Volume 193, Issue 1, 1 August 2009, Pages 155–159
نویسندگان
, , , , ,