کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1300305 | 1498799 | 2010 | 31 صفحه PDF | دانلود رایگان |

A survey of the crystallographic literature of tellurium(II)/(IV) 1,1-dithiolates (dithiocarbamate, xanthate, dithiophosphate, or dithiophosphinate) is presented. Coordination numbers range from a low of three in some organotellurium(II) 1,1-dithiolates to a high of eight in the binary tellurium(IV) dithiocarbamates. The coordination geometries are rich and varied due to the stereochemical influence exerted by up to two lone pairs of electrons and the penchant of tellurium to increase its coordination number by forming secondary Te⋯X interactions, where X = sulphur, halide, tellurium, oxygen, and, in one case, a π system defined by a four-membered TeS2C chelate. Stereochemical roles of the lone pairs of electrons are always evident in the tellurium(II) structures. By contrast, a stereochemical position is not always evident for the lone pair of electrons in the tellurium(IV) derivatives, in particular in circumstances where the tellurium centre has a high coordination number. Supramolecular aggregation mediated by Te⋯X secondary interactions often leads to the formation of dimeric aggregates but sometimes to supramolecular polymers, and rarely three-dimensional networks. Comparisons between closely related structures clearly indicate that the dithiocarbamate ligand is a more effective chelating ligand compared with the other 1,1-dithiolate ligands covered in this survey. This difference in coordinating ability is clearly correlated with the observation that non-dithiocarbamate structures are more likely to form high-dimensional supramolecular architectures.
Journal: Coordination Chemistry Reviews - Volume 254, Issues 1–2, January 2010, Pages 46–76