کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1329490 978912 2009 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Structural characterization and photocatalytic activity of hollow binary ZrO2/TiO2 oxide fibers
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی معدنی
پیش نمایش صفحه اول مقاله
Structural characterization and photocatalytic activity of hollow binary ZrO2/TiO2 oxide fibers
چکیده انگلیسی

The formation of hollow binary ZrO2/TiO2 oxide fibers using mixed precursor solutions was achieved by activated carbon fibers templating technique combined with solvothermal process. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption, X-ray photoelectron spectroscopy (XPS), UV–vis, and infrared (IR) spectroscopy. The binary oxide system shows the anatase-type TiO2 and tetragonal phase of ZrO2, and the introduction of ZrO2 notably inhibits the growth of TiO2 nanocrystallites. Although calcined at 575 °C, all hollow ZrO2/TiO2 fibers exhibit higher surface areas (>113 m2/g) than pure TiO2 hollow fibers. The Pyridine adsorption on ZrO2/TiO2 sample indicates the presence of stronger surface acid sites. Such properties bring about that the binary oxide system possesses higher efficiency and durable activity stability for photodegradation of gaseous ethylene and trichloromethane than P25 TiO2. In addition, the macroscopic felt form for the resulting materials is more beneficial for practical applications than traditional catalysts forms.

The final ZrO2/TiO2 products composed of hollow fibers are in the form of felt on the centimeter scale and possess certain strength and flexibleness. Moreover, they exhibit excellent efficiency and durable activity stability for photodegradation of gaseous ethylene and trichloromethane, reaching about 136% and 387% of the P25 activity after 10 h, respectively.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Solid State Chemistry - Volume 182, Issue 3, March 2009, Pages 560–565
نویسندگان
, , ,