کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1330909 | 978983 | 2011 | 7 صفحه PDF | دانلود رایگان |

Kinetic lattice Monte Carlo (KLMC) model is developed for investigating oxygen vacancy diffusion in praseodymium-doped ceria. The current approach uses a database of activation energies for oxygen vacancy migration, calculated using first-principles, for various migration pathways in praseodymium-doped ceria. Since the first-principles calculations revealed significant vacancy–vacancy repulsion, we investigate the importance of that effect by conducting simulations with and without a repulsive interaction. Initially, as dopant concentrations increase, vacancy concentration and thus conductivity increases. However, at higher concentrations, vacancies interfere and repel one another, and dopants trap vacancies, creating a “traffic jam” that decreases conductivity, which is consistent with the experimental findings. The modeled effective activation energy for vacancy migration slightly increased with increasing dopant concentration in qualitative agreement with the experiment. The current methodology comprising a blend of first-principle calculations and KLMC model provides a very powerful fundamental tool for predicting the optimal dopant concentration in ceria related materials.
graphical abstractIonic conductivity in praseodymium doped ceria as a function of dopant concentration calculated using the kinetic lattice Monte Carlo vacancy-repelling model, which predicts the optimal composition for achieving maximum conductivity.Figure optionsDownload as PowerPoint slideResearch highlights
► KLMC method calculates the accurate time-dependent diffusion of oxygen vacancies.
► KLMC–VR model predicts a dopant concentration of ≈15–20% to be optimal in PDC.
► At higher dopant concentration, vacancies interfere and repel one another, and dopants trap vacancies.
► Activation energy for vacancy migration increases as a function of dopant content
Journal: Journal of Solid State Chemistry - Volume 184, Issue 4, April 2011, Pages 811–817