کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1331133 | 1500132 | 2007 | 5 صفحه PDF | دانلود رایگان |

n-Type (Bi2Te3)0.9–(Bi2−xCuxSe3)0.1 (x=0–0.2) alloys with Cu substitution for Bi were prepared by spark plasma-sintering technique and their structural and thermoelectric properties were evaluated. Rietveld analysis reveals that approximate 9.0% of Bi atomic sites are occupied by Cu atoms and less than 4.0 wt% second phase Cu2.86Te2 precipitated in the Cu-doped parent alloys. Measurements show that an introduction of a small amount of Cu (x⩽0.1) can reduce the lattice thermal conductivity (κL), and improve the electrical conductivity and Seebeck coefficient. An optimal dimensionless figure of merit (ZT) value of 0.98 is obtained for x=0.1 at 417 K, which is obviously higher than those of Cu-free Bi2Se0.3Te2.7 (ZT=0.66) and Ag-doped alloys (ZT=0.86) prepared by the same technologies.
After Cu-doping with x=0.1, the highest ZT value of 0.98 is obtained at 417 K, which is about 0.32 and 0.12 higher than those of Cu-free Bi2Se0.3Te2.7 and the Ag-doped alloys (Bi2Te3)0.9–(Bi2-xAgxSe3)0.1 (x=0.4), respectively.Figure optionsDownload as PowerPoint slide
Journal: Journal of Solid State Chemistry - Volume 180, Issue 12, December 2007, Pages 3583–3587