کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1332174 979032 2008 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hydrothermal synthesis of nanocrystalline ZnSe: An in situ synchrotron radiation X-ray powder diffraction study
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی معدنی
پیش نمایش صفحه اول مقاله
Hydrothermal synthesis of nanocrystalline ZnSe: An in situ synchrotron radiation X-ray powder diffraction study
چکیده انگلیسی

The hydrothermal synthesis of nanocrystalline ZnSe has been studied by in situ X-ray powder diffraction using synchrotron radiation. The formation of ZnSe was studied using the following starting mixtures: Zn+Se+H2O (route A) and ZnCl2+Se+H2O+Na2SO3 (route B). The route A experiment showed that Zn powder starts reacting with water at 134 °C giving ZnO and H2 followed by the formation of ZnSe which takes place in temperature range from 167 to 195 °C. The route B experiment shows a considerably more complex reaction path with several intermediate phases and in this case the formation of ZnSe starts at 141 °C and ZnSe and Se were the only crystalline phases observed at the end of the experiment where the temperature was 195 °C. The sizes of the nanocrystalline particles were determined to 18 and 9 nm in the route A and B experiments, respectively. Nanocrystalline ZnSe was also synthesized ex situ using the route A and B methods and characterized by conventional X-ray powder diffraction and transmission electron microscopy. An average crystalline domain size of ca. 8 nm was determined by X-ray powder diffraction in fair agreement with TEM images, which showed larger aggregates of nanoparticles having approximate diameters of 10 nm. Furthermore, a method for purification of the ZnSe nanoparticles was developed and the prepared particles showed signs of anisotropic size broadening of the diffraction peaks.

Stack of powder diagrams showing the formation of nanocrystalline ZnSe under hydrothermal conditions.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Solid State Chemistry - Volume 181, Issue 8, August 2008, Pages 1925–1929
نویسندگان
, , ,