کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1333764 979099 2008 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
High-pressure X-ray diffraction study of SrMoO4 and pressure-induced structural changes
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی معدنی
پیش نمایش صفحه اول مقاله
High-pressure X-ray diffraction study of SrMoO4 and pressure-induced structural changes
چکیده انگلیسی

SrMoO4 was studied under compression up to 25 GPa by angle-dispersive X-ray diffraction. A phase transition was observed from the scheelite-structured ambient phase (space group I41/a) to a monoclinic fergusonite phase (space group I2/a) at 12.2(9) GPa. The unit-cell parameters of the high-pressure phase are a=5.265(9) Å, b=11.191(9) Å, c=5.195 (5) Å, and β=90.9(1)°, Z=4 at 13.1 GPa. There is no significant volume collapse at the phase transition. No additional phase transitions were observed and on release of pressure the initial phase is recovered, implying that the observed structural modifications are reversible. The reported transition appeared to be a ferroelastic second-order transformation producing a structure that is a monoclinic distortion of the low-pressure phase and was previously observed in compounds isostructural to SrMoO4. A possible mechanism for the transition is proposed and its character is discussed in terms of the present data and the Landau theory. Finally, the room temperature equation of states is reported and the anisotropic compressibility of the studied crystal is discussed in terms of the compression of the Sr–O and Mo–O bonds.

The evolution of the structure of SrMoO4 upon compression was established using synchrotron X-ray diffraction and a diamond-anvil cell. A pressure-induced phase transition was found involving a symmetry decrease from tetragonal to monoclinic. A transition mechanism is proposed and its ferroelastic character is discussed in terms of the Landau theory.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Solid State Chemistry - Volume 181, Issue 2, February 2008, Pages 355–364
نویسندگان
, , , ,