کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
13408185 | 1840844 | 2020 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Terrestrial laser scanning for non-destructive estimates of liana stem biomass
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم کشاورزی و بیولوژیک
بوم شناسی، تکامل، رفتار و سامانه شناسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Lianas are important and yet understudied components of tropical forests. Recent studies have shown that lianas are increasing in abundance and biomass in neotropical forests. However, aboveground biomass estimates of lianas are highly uncertain when calculated from allometric relations. This is mainly because of the limited sample size, especially for large lianas, used to construct the allometric models. Furthermore, the allometry of lianas can be weakly constrained mechanically throughout its development from sapling to mature form. In this study, we propose to extract liana stem biomass from terrestrial laser scanning (TLS) data of tropical forests. We show good agreement with a concordance correlation coefficient (CCC) of 0.94 between the TLS-derived volume to reference volume from eleven synthetic lianas. We also compare the TLS-derived biomass for ten real lianas in Nouragues, French Guiana, with the biomass derived from all existing allometric equations for lianas. Our results show relatively low CCC values for all the allometric models with the most commonly used pantropical model overestimating the total biomass by up to 133% compared to the TLS-derived biomass. Our study not only facilitates the testing of allometric equations but also enables non-destructive estimation of liana stem biomass. Since lianas are disturbance-adapted plants, liana abundance is likely to increase with increased forest disturbance. Our method will facilitate the long-term monitoring of liana biomass change in regenerating forests after disturbance, which is critical for developing effective forest management strategies.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Forest Ecology and Management - Volume 456, 15 January 2020, 117751
Journal: Forest Ecology and Management - Volume 456, 15 January 2020, 117751
نویسندگان
Sruthi M. Krishna Moorthy, Pasi Raumonen, Jan Van den Bulcke, Kim Calders, Hans Verbeeck,