کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1355931 1500457 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Structural analysis of substrate-mimicking inhibitors in complex with Neisseria meningitidis 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase – The importance of accommodating the active site water
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آلی
پیش نمایش صفحه اول مقاله
Structural analysis of substrate-mimicking inhibitors in complex with Neisseria meningitidis 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase – The importance of accommodating the active site water
چکیده انگلیسی


• Competitive inhibition of N. meningitidis DAH7P synthase by substrate mimics.
• Co-accommodation of active site water and inhibitor is important for inhibition.
• Key catalytic residues of DAH7P synthase identified from inhibitor bound structures.

3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyses the first committed step of the shikimate pathway, which produces the aromatic amino acids as well as many other aromatic metabolites. DAH7PS catalyses an aldol-like reaction between phosphoenolpyruvate and erythrose 4-phosphate. Three phosphoenolpyruvate mimics, (R)-phospholactate, (S)-phospholactate and vinyl phosphonate [(E)-2-methyl-3-phosphonoacrylate], were found to competitively inhibit DAH7PS from Neisseria meningitidis, which is the pathogen responsible for bacterial meningitis. The most potent inhibitor was the vinyl phosphonate with a Ki value of 3.9 ± 0.4 μM. We report for the first time crystal structures of these compounds bound in the active site of a DAH7PS enzyme which reveals that the inhibitors bind to the active site of the enzyme in binding modes that mimic those of the predicted oxocarbenium and tetrahedral intermediates of the enzyme-catalysed reaction. Furthermore, the inhibitors accommodate the binding of a key active site water molecule. Together, these observations provide strong evidence that this active site water participates directly in the DAH7PS reaction, enabling the facial selectivity of the enzyme-catalysed reaction sequence to be delineated.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Bioorganic Chemistry - Volume 57, December 2014, Pages 242–250
نویسندگان
, , , , ,