کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1356448 981119 2009 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Intrinsic reactivity of uric acid with dioxygen: Towards the elucidation of the catalytic mechanism of urate oxidase
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آلی
پیش نمایش صفحه اول مقاله
Intrinsic reactivity of uric acid with dioxygen: Towards the elucidation of the catalytic mechanism of urate oxidase
چکیده انگلیسی

Urate oxidase catalyzes the transformation of uric acid in 5-hydroxyisourate, an unstable compound which is latter decomposed into allantoïn. Crystallographic data have shown that urate oxidase binds a dianion urate species deprotonated in N3 and N7, while kinetics experiments have highlighted the existence of several intermediates during catalysis. We have employed a quantum mechanical approach to analyze why urate oxidase is selective for one particular dianion and to explore all possible reaction pathways for the oxidation of one uric acid species by molecular dioxygen in presence of water. Our results indicate the urate dianion deprotonated in N3 and N7 is among all urate species that can coexist in solution it is the compound which will lose the most easiestly one electron in presence of molecular dioxygen. In addition, the transformation of this dianion in 5-hydroxyisourate is thermodynamically the most favorable reaction. Finally, several reaction pathways can be drawn, each starting with the spontaneous transfer of one electron from the urate dianion to molecular dioxygen. During that period, the existence of a 5-hydroperoxyisourate intermediate, which has been proposed elsewhere, does not seem mandatory.

Proposal for the reactivity of urate in urate oxidase starting from urate 3,7-dianion. Reported energies (ΔE in kcal/mol) are relatives energies compared to the reactants computed from fully optimized B3LYP/6-31++G∗∗ and MP2/6-31++G∗∗ structures, respectively.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Bioorganic Chemistry - Volume 37, Issue 4, August 2009, Pages 111–125
نویسندگان
, , ,