کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1357682 | 981273 | 2016 | 12 صفحه PDF | دانلود رایگان |

In this work, 48 thrombin inhibitors based on the structural scaffold of dabigatran were analyzed using a combination of molecular modeling techniques. We generated three-dimensional quantitative structure–activity relationship (3D-QSAR) models based on three alignments for both comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) to highlight the structural requirements for thrombin protein inhibition. In addition to the 3D-QSAR study, Topomer CoMFA model also was established with a higher leave-one-out cross-validation q2 and a non-cross-validation r2, which suggest that the three models have good predictive ability. The results indicated that the steric, hydrophobic and electrostatic fields play key roles in QSAR model. Furthermore, we employed molecular docking and re-docking simulation explored the binding relationship of the ligand and the receptor protein in detail. Molecular docking simulations identified several key interactions that were also indicated through 3D-QSAR analysis. On the basis of the obtained results, two compounds were designed and predicted by three models, the biological evaluation in vitro (IC50) demonstrated that these molecular models were effective for the development of novel potent thrombin inhibitors.
Structure–activity relationships derived from 3D-QSAR/Topomer CoMFA studies.Figure optionsDownload as PowerPoint slide
Journal: Bioorganic & Medicinal Chemistry - Volume 24, Issue 2, 15 January 2016, Pages 73–84