کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1359111 | 981384 | 2010 | 17 صفحه PDF | دانلود رایگان |

A series of novel 6-O-substituted and 6,12-di-O-substituted 8a-aza-8a-homoerythromycin A and 9a-aza-9a-homoerythromycin A ketolides were synthesized and evaluated for in vitro antibacterial activity against a panel of representative erythromycin-susceptible and erythromycin-resistant test strains. Another series of ketolides based on 14-membered erythromycin oxime scaffold was also synthesized and their antibacterial activity compared to those of 15-membered azahomoerythromycin analogues. In general, structure–activity studies have shown that 14-membered ketolides displayed favorable antibacterial activity in comparison to their corresponding 15-membered analogues within 9a-azahomoerythromycin series. However, within 8a-azahomoerythromycin series, some compounds incorporating a ketolide combined with either quinoline or quinolone pharmacophore substructures showed significantly potent activity against a variety of erythromycin-susceptible and macrolide-lincosamide-streptogramin B (MLSB)-resistant Gram-positive pathogens as well as fastidious Gram-negative pathogens. The best compounds in this series overcome all types of resistance in relevant clinical Gram-positive pathogens and display hitherto unprecedented in vitro activity against the constitutively MLSB-resistant strain of Staphylococcus aureus. In addition, they also represent an improvement over telithromycin (2) and cethromycin (3) against fastidious Gram-negative pathogens Haemophilus influenzae and Moraxella catarrhalis.
Figure optionsDownload as PowerPoint slide
Journal: Bioorganic & Medicinal Chemistry - Volume 18, Issue 24, 15 December 2010, Pages 8566–8582