کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1359320 | 981400 | 2011 | 8 صفحه PDF | دانلود رایگان |

FabH, β-ketoacyl-acyl carrier protein (ACP) synthase III, is a particularly attractive target, since it is central to the initiation of fatty acid biosynthesis and is highly conserved among Gram-positive and Gram-negative bacteria. A series of o-hydroxybenzylamines 1–16 and its corresponding new urea derivatives 17–32 were synthesized and fully characterized by spectroscopic methods and elemental analysis. This new urea derivatives class demonstrates strong antibacterial activity. Escherichia coli FabH inhibitory assay and docking simulation indicated that the compounds 1-(5-bromo-2-hydroxybenzyl)-1-(4-fluorophenyl)-3-phenylurea (18) and 1-(5-bromo-2-hydroxybenzyl)-1-(4-chlorophenyl)-3-phenylurea (20) were potent inhibitors of E. coli FabH.
FabH, β-ketoacyl-acyl carrier protein (ACP) synthase III, is a particularly attractive target, since it is central to the initiation of fatty acid biosynthesis and is highly conserved among Gram-positive and Gram-negative bacteria. A series of o-hydroxybenzylamines 1–16 and its corresponding new urea derivatives 17–32 were synthesized and fully characterized by spectroscopic methods and elemental analysis. This new urea derivatives class demonstrates strong antibacterial activity. Escherichia coli FabH inhibitory assay and docking simulation indicated that the compounds 1-(5-bromo-2-hydroxybenzyl)-1-(4-fluorophenyl)-3-phenylurea (18) and 1-(5-bromo-2-hydroxybenzyl)-1-(4-chlorophenyl)-3-phenylurea (20) were potent inhibitors of E. coli FabH.Figure optionsDownload as PowerPoint slide
Journal: Bioorganic & Medicinal Chemistry - Volume 19, Issue 15, 1 August 2011, Pages 4413–4420