کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1359748 981412 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Structural optimization of a CXCR2-directed antagonist that indirectly inhibits γ-secretase and reduces Aβ
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آلی
پیش نمایش صفحه اول مقاله
Structural optimization of a CXCR2-directed antagonist that indirectly inhibits γ-secretase and reduces Aβ
چکیده انگلیسی

Amyloid β (Aβ), a key molecule in the pathogenesis of Alzheimer’s disease (AD), is derived from the amyloid precursor protein (APP) by sequential proteolysis via β- and γ-secretases. Because of their role in generation of Aβ, these enzymes have emerged as important therapeutic targets for AD. In the case of γ-secretase, progress has been made towards designing potent inhibitors with suitable pharmacological profiles. Direct γ-secretase inhibitors are being evaluated in clinical trials and new strategies are being explored to block γ-secretase activity indirectly as well. In this regard, we have previously reported an indirect regulation of γ-secretase through antagonism of CXCR2, a G-protein coupled receptor (GPCR). We demonstrated that N-(2-hydroxy-4-nitrophenyl)-N′-(2-bromophenyl)urea (SB225002), a selective inhibitor of CXCR2 also plays a role in an indirect inhibition of γ-secretase. Furthermore, we reported a ∼5-fold difference in the selective inhibition of APP versus Notch processing via γ-secretase following treatment with SB225002. Herein we describe the synthesis and optimization of SB225002. By determination of the structure–activity relationship (SAR), we derived small molecules that inhibit Aβ40 production with IC50 values in the sub-micromolar range in a cell-based assay and also validated the potential of CXCR2 as a new target for therapeutic intervention in AD.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Bioorganic & Medicinal Chemistry - Volume 17, Issue 23, 1 December 2009, Pages 8102–8112
نویسندگان
, , , , , ,