کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1361076 981456 2008 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A binary QSAR model for classification of hERG potassium channel blockers
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آلی
پیش نمایش صفحه اول مقاله
A binary QSAR model for classification of hERG potassium channel blockers
چکیده انگلیسی

Acquired long QT syndrome causes severe cardiac side effects and represents a major problem in clinical studies of drug candidates. One of the reasons for development of arrhythmias related to long QT is inhibition of the human ether-a-go-go-related-gene (hERG) potassium channel. Therefore, early prediction of hERG K+ channel affinity of drug candidates is becoming increasingly important in the drug discovery process. Binary QSAR models with threshold values at IC50 = 1 and of 10 μM, respectively, were generated using two different sets of descriptors. One set comprising 32 P_VSA descriptors and the other one utilizing a set of descriptors identified out of a large set via a feature selection algorithm. For the full dataset, the power for classification of hERG blockers was 82–88%, which meets prior classification models. Considering the fact that 2D descriptors are fast and easy to calculate, these binary QSAR models are versatile tools for use in virtual screening protocols.

We describe the development and validation of binary QSAR models for rapid classification of hERG potassium channel blockers.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Bioorganic & Medicinal Chemistry - Volume 16, Issue 7, 1 April 2008, Pages 4107–4119
نویسندگان
, ,